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ABSTRACT 

An Eulerian linite difference method is presented which can be used with 

a high-speed computer to solve the time-dependent equations of motion for 

the compressible flow of a fluid. The difference equations are described in 

detail, and the nature of the truncation errors introduced by the numerical 

approximations is discussed, as are the stability properties of the equations. 

Three solutions involving time-dependent flow in two space dimensions 

are described and analyzed: the diffraction of a weak shock travelling through 

a z-shaped tunnel, the interaction of a supersonic blunt body with a plane 

shock wave, and the passage of a plane shock over a conical body. Good 

agreement with experimental data is obtained in all cases where compari- 

sons are made. 

INTRODUCTION 

The development of high-speed computers has made it possible to 
solve a wide variety of complex time-dependent flow problems by using 
numerical techniques to solve the equations of motion for compressible 
fluid dynamics. Various methods are available for solving certain clas- 
ses of problems, but each of the known methods has certain limitations. 
Lagrangian differencing techniques give good results with fine resolu- 
tion for problems where the fluid distortions are relatively small. How- 
ever, they are not suitable for cases involving large fluid distortions since 
the computing mesh becomes very irregular, leading to large errors as 
well as severe computational instabilities. The Particle-in-Cell (PIC) 
method, a combined Eulerian-Lagrangian scheme, has been applied 
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successfully to solve a wide variety of multifluid problems where the 
fluid distortions are large [l, 21. It utilizes Lagrangian fluid particles to 
transport mass, momentum, and energy through an Eulerian mesh of 
cells. While the use of these particles facilitates the calculation of multi- 
fluid problems, it also results in nonphysical fluctuations of the fluid 
quantities. Furthermore, the dual mesh system of the PIC method 
makes great demands on computer memory capacity and calculation 
time. 

The technique described in this paper, known as the Fluid-in-Cell 
(FLIC) method, is an outgrowth of the work of Rich [3]. The difference 
equations are very similar to those used in the PIC method. However, 
it employs a different transport calculation which does not require the 
use of particles. This reduces the memory storage requirements for a 
given problem and reduces the computing time, since it is not necessary 
to compute the motion of the particles. Furthermore, the elimination 
of particles allows solutions which are free of the fluctuations which are 
characteristic of PIC. A version of the FLIC method is described here 
which is suitable for one material problems with symmetry about an 
axis or a plane, in which the solution is a function of two space variables 
and time. A general discussion of the important characteristics of the 
difference equations is presented and the results of several applications 
are discussed. 

I. THE COMPUTING MESH 

In order to obtain a solution, the volume containing the fluid is first 
subdivided into a number of cells. A typical computational mesh is 
shown in Fig. 1. The center of a typical cell, denoted by the indices zj, 
is located at (i + 8) 6z, ( j + S) 6r. For problems in which a Cartesian 
coordinate system is used, each cell is a right parallelpiped with dimen- 
sions 6r, 6z, 1. If cylindrical coordinates are specified, then cell ij is a 
rectangular torus with inner and outer radii jar, and (j + 1)6r, respec- 
tively, and width 6~. The cells have the properties shown in Table I. 
Here S$ is the area of contact between cell ij and cell i + 1, j open to 
z-direction flow, S;+,,, is the area of contact between cell ij and cell 
i, j + 1 open to r-direction flow, and Vi is the volume of cell ij. 

The basic variables used to characterize the state of the fluid are the 
density, Q, the z and r components of the fluid velocity, u and v, and the 
specific internal energy, I. Other thermodynamic quantities such as the 
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FIG. 1. The computing mesh. 

pressure and sound speed are determined through the equation of state. 
For the examples presented, we have used an equation of state of the 
form 

p = (Y - l)eZ, 

where y, the ratio of the specific heats, can be a function of Q and I. 
The use of any other form, however, could be accomplished with equal 
ease. 

TABLE 1 

GEOMETRICAL PROPERTIES OF MESH CELLS 

Property Plane coordinates Cylindrical coordinates 

Volume (V,) 

Area (S;) 

Area (SJ+l,z) 

6r 62 

6r 

6Z 

2n(j + 4) 6ra 62 

274i + 4) he 
2n(j+ 1)6r6z 
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II. THE DIFFERENCE EQUATIONS 

lnitial values of density, velocity, and specific internal energy are as- 
signed to each mesh cell at the beginning of the problem. The value of 
each cell quantity is advanced in time using a finite difference approxi- 
mation for the equations of motion of the fluid. The calculational scheme 
used here consists of two steps for each cycle: First, intermediate values 
are calculated for the velocities and specific internal energy, taking into 
account the effects of acceleration caused by pressure gradients. Second, 
transport effects are calculated. 

The mass flow occurring across the cell boundaries during the time in- 
crement 6t is determined using the intermediate values of velocity just 
calculated. The flow of momentum and energy are then computed by 
assuming that the mass which has crossed the cell boundaries carries 
momentum and energy corresponding to the intermediate values of 
velocity and specific energy of the donor cell. Then the final values for 
u, v, and I are computed by using the conservation of mass, momentum, 
and energy. 

One can calculate either the specific internal energy or the specific 
total energy directly from the finite difference equations. The latter al- 
ternative is generally chosen for Eulerian techniques which retain the 
transport terms in the difference equations, because it lends itself more 
readily to energy conservation requirements. The FLIC method, however, 
calculates internal energy directly, using a difference form of the energy 
equation 

DI -~~ 
Dt 

~ -- Pl7.u. 

Here 
D d --:_ 
Dt dt 

+ u*v. 

Energy conservation then follows by separating the calculation of ac- 
celeration effects from the calculation of transport effects and by the 
proper choice of time centering in Eq. (1) [4]. 

The quality of numerical results obtained is particularly sensitive to 
the method of representing the work term, - PV. u. The form of the 
energy equation given below is practically identical with that used by 
Harlow in the PIC method [2]. This method, known as “zip-type” 
differencing, tends to eliminate spurious local oscillations in the solu- 
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tions which occur when other schemes are used. Zip-type differencing 
is also effective in reducing the occurrence of negative values of the spe- 
cific internal energy during the course of the calculation. In fact, the 
occurrence of negative values of I can be prevented by suitably restrict- 
ing the value of 6t if the fluid obeys a polytropic equation of state. 

Assume that at time t = n8t the following values are specified for each 
cell [j: 

density : eaj 
z-velocity component: U?j 

r-velocity component: Vb 
specific internal energy : Z?j 

Values are then calculated for time t = (n + 1)Bt as follows: 

Step 1. The pressure P?$ is first calculated for each cell, using & 
Zqj and the equation of state. Intermediate values for u, v, and Z, denoted 
by a tilde, are now calculated using the relations 

(3) 

+ t 4%+1,2 cq+1 qj+1 + qw 
- B @&l/2 (S,TZj + s;-14,j-1) (5) 
- v’lzi q ~4~,i+1/2 - 42-112) - c?j % (q?+llz,j - 4%1,z.j) 

+ sg m+u2,i mj + 4?+1,2.j 1 - Q%-,,z,i mj + 4L,2,j)I). 

Here we use the notation: 

P ,+llz,j = B (P,j + Pi+1,i)* 

iiri = 4 (2~ + Gij), etc. (6) 

The quantity q1+1,2,i is an artificial viscosity term which is added to 
enhance the stability properties of the difference equations in regions 
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where the fluid velocity is small compared to the local sound speed, 
c’$. The viscosity term is of the form 

if K(u2 + ~2Yh2,i -c (c~)%+~,~,~ 

9?+1/2,j = Bc%u~.~ Q?+I/z,~(@~ - @+l,j) 
and if u’$ > uq,,,? 

= 0 otherwise (7) 

if HU2 + v2Yi,i+u2 < (c2)l,j+1/2 

q’i,j+1/2 = W,~+uz e~,i+l12(v’ii - v’!,j+d 
and if v?j > va,j+i 

= 0 otherwise. 

The quantity K determines the maximum value of the Mach number 
at a cell interface for which the artificial viscosity term will be applied. 
The quantity B determines the magnitude of the viscous pressure term. 
It should be large enough to insure stability but small enough to avoid 
obscuring important details of the solution. Generally, B need not 
exceed a value of 0.5. 

Step 2. Transport effects are now calculated. The mass which flows 
from cell to cell is directly proportional to the density of the donor cell 
(the cell from which the fluid is flowing). This has two advantages : First, 
it precludes the possibility that a cell can completely empty itself and 
develop a negative density. Second, this method, known as donor cell 
mass flow differencing, results in good stability properties for the far 
subsonic regions of the mesh. 

Let A”?+l12, j  be the mass flowing across the area Sj during the time 
increment St. Similarly, let dM!$j+,/, be the mass flowing across the 
area Ss+1,2. The mass flow for the right side of cell ij is then given by 

AM?+m,j = Sj e9i @+,/2,j St if u”?$+,,2,i > 0 

= Sj Ql+l,j &112,j St if il?$+l/2,j < 0. (8) 

Similarly, for the upper side of cell ij we use the relation 

A new value for the density in cell ij can now be obtained by applying 
the law of conservation of mass: 
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@‘it’ = e’b + --& (AMl,j-1,2 + AM’“,-l,2,i - AM’i,i+1,2 - AW+m,j). 
i (10) 

Transport of the momentum components and energy is now accom- 
plished, assuming that the mass which crosses the cell boundaries car- 
ries the tilde velocity components and the tilde specific internal energy 
of the donor cell. If the four sides of cell ij are numbered as shown in 
Fig. 2, then we can define a function Tif(k) such that 

TJk) = 1 if fluid flows into cell ij across side k 

= 0 if fluid flows out of cell ij across side k. 

4 

I 
I 

i,j 3 

2 
FIG. 2. Nomenclature of cell boundaries for transport calculations. 

New values for the velocity components and for the energy per unit 
mass, E, which correspond to time (n + l)& are obtained using a gen- 
era1 relationship of the form 

Here 

The specific internal energy is then found using the relation 

I’jf’ = E’$Jfl - 4 (u2 + v2yp. 

(12) 

(13) 
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III. BOUNDARY CONDITIONS 

The difference equations developed in the previous section are only 
valid for the interior cells which are not adjacent to one of the boundaries 
of the computing mesh. Three types of mesh boundaries have been 
used : input boundaries, continuative output boundaries, and reflective 
boundaries. The first two of these are rather easily specified, but the 
last will require considerably more discussion. In all three cases the 
boundary criterion reduces to a determination of the values of the flow 
variables in fictitious cells outside the calculating mesh. 

In the cells adjacent to an input boundary these values are chosen 
so as to represent the state of the fluid which is entering the mesh. At 
any given time these values are constant along the boundary but they 
may vary with time to represent, for example, a decaying shock wave. 
At a continuative output boundary the flow quantities in the fictitious 
boundary cells are defined in such a way that the normal space deriva- 
tive of the variables vanishes at the boundary. If the output boundary 
coincides with cell boundaries, this merely reduces to setting the flow 
variables in each fictitious exterior cell equal to the value in the adjacent 
interior cell. 

The difference equations for those cells adjacent to the bounding sur- 
face of a rigid body must be modified to insure that there is no flow of 
mass or energy across the boundary. This requires that the normal ve- 
locity component be zero at the body surface. In the simple case where 
these reflective surfaces coincide with cell boundaries, the desired bound- 
ary condition can be obtained by the use of fictitious cells. As an 
example, assume that the right-hand surface of cell ij coincides with a 
rigid body surface. A fictitious cell, i + I,j is used whose state at any 
time is completely defined by the state of cell ij at the corresponding 
time. The prescription for cell i + 1,j is that the density and the specific 
internal energy must at all times be the same as in cell ij, and that the 
velocity must be the mirror image of that in ij. Thus at the end of step 1 

and at the end of step 2 

If the obstacle has a corner as shown by the shaded area in Fig. 3, the 
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FIG. 3. Boundary cells at a comer. 

fictitious cell i + 1,j is assigned two sets of variables depending on whe- 
ther calculations are being made for cell ij or for cell i + 1,j + 1. 

More complicated boundary conditions are needed for a general body 
shape, where the body surface does not necessarily coincide with cell 
boundaries. A general curved boundary can be approximated as a se- 
quence of straight lines such as is shown in Fig. 4. Each line segment 
then cuts across cell boundaries, which means that partial cells must 
be used. The partial cells thus created have a smaller volume than does 
a normal cell. Each partial cell is characterized by five geometrical 
quantities: fii, Aiwllz,i, Ai+l12,j, Ai,i-1,2, and AQ+~,~. The quantity fii 
is the volume fraction of the boundary cell ij which is occupied by the 
fluid; Ai-llz,i is the fraction of the area of cell ij which is open to flow 
between cell ij and cell i - l,j, etc. 

Fictitious cells are created as before to obtain the reflective boundary 

FIG. 4. Partial cells adjacent to a curved body surface. 
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condition. However, the difference equations must be modified to ac- 
count for the smaller dimensions of the partial cells. The difference 
equations for calculating the tilde values of velocity and specific internal 
energy for partial cells are given by: 

(14) 

The viscous pressure at the boundary of a partial cell is applied in a 
manner which is similar to that used for an interior cell except that: 

a. If the cell side has part of its area open for the flow of fluid into 
an adajcent cell, the viscous pressure terms are calculated as if 
this side were entirely unobstructed. 

b. If a side of cell ij is entirely closed to fluid flow, use the following 
prescription: If side i + $,j represents a rigid boundary, then 

q%+llz,j = 2Bc’lj e’$j U8j 

= 0 otherwise. 

if K(U2 + V")?j < (C")?. 27 

and if @j > 0 
(18) 

An analogous expression is used for qi,j+1/2 in the case where side 
i, j + 4 of cell ij is a rigid boundary. 
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The transport terms in step 2 are also different at a boundary cell. 
The mass flow terms now become 

The new value of density for the time (n + 1)6t is given by 

e2+l = Q?i + vjfij L (AMl”,+1/2 + AM1-1,2,j - AM’?,~+l/2 - AM’i+llz,j)* 

(21) 

Expressions for the energy and velocity components at time (n +l)& 
are of the form 

As before, 

%j 
Fii = Vii 

1 I 

. (23) 
Eij 

The use of partial cells can cause difficulty in cases where they are 
much smaller than full sized cells. Since the maximum value of 6t is 
limited for stability and accuracy reasons by the minimum cell dimen- 
sion, these small partial cells could lead to prohibitively long calculation 
times. Such extremely small partial cells should therefore be avoided 
whenever possible. If these small cells should prove to be essential, 
then the time limitations may be overcome by using more computing 
cycles per unit time for the partial cells than for the rest of the mesh. 
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IV. STABILITY AND ACCURACY 

The use of finite difference equations introduces truncation errors 
which are determined by the size of Bx and Bt. Furthermore, the artificial 
viscosity term which is added for computational stability also introduces 
errors into the solutions. If the difference equations are stable, then 
errors related to the finite size of 6t are usually small, since the relative 
change of the cellwise variables which occurs in a time step is usually 
small. On the other hand, the truncation errors related to the finite 
size of the mesh cells are more likely to be important, since limitations 
of machine storage and running time make it necessary to use a fairly 
coarse computing mesh for two-dimensional problems. 

The dominant error terms that are introduced by the numerical ap- 
proximations can be obtained by performing a Taylor expansion of the 
finite difference equations, neglecting all terms which are of order 6t or 
6x2. The form of these error terms is shown below for the case where the 
solution is a function of one space variable and time: 

Artificial 
viscosity 

Truncation error terms - 

(24) 
D@ ot+Qg= 

terms d %! . . . 
+dx VG i ) 

(25) 

(26) 
Here, 

E=Q juldx. (27) 

The correct terms in the equations of motion of the fluid are given on 
the left side of Eqs. (24), (25), and (26), and the dominant error terms 
appear on the right-hand side. There are two types of error terms: Ar- 
tificial viscosity terms which contain 4 and dq/dx, and truncation terms, 
which contain E and ds/dx. The effect of the error terms is to cause an 
artificial diffusion of mass, momentum, and energy to occur in regions 
where there are large variations. Actually,s ome of the terms are similar 
to those which would be present if bulk viscosity and heat conduction 
effects were included. Consider, for example, the term d/dx(@edu/dx) 
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which appears in the momentum equation. Here the quantity E plays 
the role of the bulk viscosity. The terms d/dx(@?l/dx) and e&(du/dx)2 
that appear in the energy equation are analogous to the heat conduction 
and viscous dissipation terms which occur in the flow of real fluids. 
The right-most terms which appear in the three equations are artificial 
mass diffusion terms. 

These errors cause shocks to smear much in the same manner as would 
ordinary viscosity and heat conduction effects. However, there are sev- 
eral important differences. First, since E is proportional to Bx, the 
shock thickness will be determined by 8x in contrast to the case for real 
gases, where it is determined by the microscopic mean free path for dif- 
fusion processes. Also, the effective “viscosity” is proportional to / u 1, 
the magnitude of the local velocity of the fluid relative to the computing 
mesh. This is nonphysical since a term of this type destroys the Gali- 
lean invariance of the solution. 

The effects of the two types of differencing errors can be seen in the 
plots shown in Fig. 5. Here the IBM 7030 (“Stretch”) computer has been 
used to obtain the solution for axi-symmetric flow past a flat-faced cylin- 
drical body at a Mach number of 3.15. The Stromberg-Carlson SC 4020 
plotter has been used to plot the pressure contours (isobars), the density 
contours (isopycnics), and the specific internal energy (S.I.E.) contours 
for the numerical solution. The upper row of plots shows the solution 
for a case where the artificial viscosity term is zero. The smearing of the 
bow shock is a result of the diffusion effects caused by the truncation 
errors. The lower row of plots depicts a solution which is similar in all 
respects except that artificial viscostiy has been included. (Here, B 
has a value of 0.5.) It can be seen that the additional diffusion effects 
caused by the artificial viscosity result in an additional smearing of the 
detached shock. Also evident here is an entropy increase in the region 
of the flat body surface which is characteristic of numerical solutions 
involving the use of artificial viscosity. This is demonstrated by an in- 
crease in the specific internal energy at the body surface which is offset 
by a decrease in the fluid density, leaving the surface pressure essentially 
unchanged. This effect has been observed in a number of problems in- 
volving the interaction of a fluid with a rigid boundary. 

The effects of the truncation errors on Galilean invariance can be 
seen by considering a particular example. Consider two problems which 
are identical except that the velodities in the second differ everywhere 
from those in the first by a constant value, say U,. The numerical solu- 
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Pressure Density S.I.E 
FIG. 5. Computer-drawn plots which depict the numerical:solution for steady 

flow past a blunt body at a Mach number of 3.15. 

tions which would be obtained for these problems will show another 
important difference. Since the cellwise values of E are different for the 
two calculations, the diffusion effects caused by the truncation errors 
will also be different. If U, increases the local magnitude of the fluid 
velocity, for instance, than it will increase E and hence increase the 
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amount of smearing caused by the truncation errors. This effect is il- 
lustrated in Fig. 6, which compares the calculated profiles of two shocks 
characterized by a shock Mach number of 2.0. Here the fluid has a 
value of y equal to 1.4. Pressure and velocity are plotted as a function 

OO- 16 

X/8X x/s x 

FIG. 6. Calculated velocity and pressure profiles for two shocks propagating with 
different velocities relative to the computing mesh. In each case the shock Mach 
number is equal to 2.0. 

of distance, where the distance is measured in units of 6x, the cell width. 
In the first case, represented by the unbroken line, the shock is propa- 
gating into a fluid at rest. In the second case, the fluid velocity ahead of 
the shock is equal to one half the shock velocity used in the first solution. 
Greater smearing is evident at the shock front for the second solution. 
This is caused by the additional diffusion effects which result from the 
increase in velocity relative to the computing mesh. 

For many problems the detailed structure of discontinuities such as 
shocks and contact surfaces are not important. For these cases, the 
effect of the truncation errors can be reduced to a satisfactory level by 
choosing 6x to be small compared with the characteristic lengths as- 
sociated with the important features of the solution. 

The truncation error terms which appear on the right-hand side of 
Eqs. (24), (25), and (26) can be eliminated, leaving only terms of order 
8x2, by altering the methods used in step 2 for calculating transport 
effects. The artificial mass diffusion terms, which are the rightmost terms, 
can be eliminated by using the average density at a cell boundary to 
calculate the mass flow that occurs across the cell boundary during the 
time step 6t. Similarly, the “viscosity” and “heat conduction” error terms 
can be eliminated by using the boundary cell averages of the velocity 
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and specific internal energy to compute the transport of momentum 
and energy across the cell boundaries. Thus the use of boundary cell 
averages appears at first glance to be of higher order accuracy than the 
donor cell method. However, it leads to a set of difference equations 
which have undesirable stability properties. In addition, the use of bound- 
ary cell averages can lead to negative cell densities. 

The time step is usually chosen such that 

to insure accurate solutions. In addition to this requirement other con- 
ditions must be met to insure computational stability. A one-dimensional 
linear stability analysis for the stagnation region indicates that the fol- 
lowing inequalities must hold in order to insure a stable solution: 

where 
(291 

Eli, = Min [I <B, - J/B + (y2B’ -C 4~)l’~, yB/(y - I)]. (30) 

(See Harlow [5] and Richtmyer [6] for a discussion of the linear stability 
analysis for finite difference equations.) Several of the stability modes 
which occur have been observed in one-dimensional test problems. 
The above condition indicates that the difference scheme is uncondition- 
ally unstable if B is zero, i.e., if the artificial viscosity is zero. We find, 
however, that in certain types of two-dimensional problems a stable 
solution can be obtained in the absence of artificial viscosity. The blunt 
body problem shown earlier demonstrates this. 

V. APPLICATIONS OF THE FLIC METHOD 

Butler [7] recently used the FLIC method to compute the interaction 
of plane shocks with rectangular obstacles and axi-symmetric blunt 
bodies. He was able to obtain very good agreement with photographic 
data obtained by Bleakney [8] for the diffraction of a weak shock by a 
rectangular body. Three recent investigations are described below to 
illustrate the applicability of the method. In each case the solution was 
obtained using an IBM 7030 (“Stretch”) computer. The plots shown were 
made by incorporating a special plot routine into the program and pro- 
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cessing the output through the Stromberg-Carlson SC-4020 Microfilm 
Recorder. 

Diffraction of a Shock by a z-Shaped Tunnel. Reichenbach [9] and Daly 
et al. [lo] recently studied the effect of a z-shaped tunnel in reducing the 
strength of the reflected shock which reaches a bomb shelter door, located 
at the end of the tunnel. Reichenbach’s shock tube experiments, with 
which we compare our numerical results, made use of the scale model 
of the tunnel shown in Fig. 7. In order to determine the reduction in 

H POINT 1 

FIG. 7. Scale model of the shelter access tunnel used by Reichenbach in his shock 
tube experiments. 

the strength of the shock resulting from its passage around the corners 
of the tunnel, he made continuous pressure measurements at points 1 
and 2 as shown in Fig. 7. The width of the experimental tunnel was 
2 cm, and the lengths of the first and second legs were respectively 8 
and 8.8 cm. A deposit plate was located in the mouth of the channel in 
order to obtain a uniform input pressure. 

A numerical solution has been obtained which simulates this experi- 
ment using a boundary configuration which is identical with that of the 
experiment. An input channel, of approximately the same length as 
that formed by the deposit plate in the experiment, is also included in 
the calculational mesh. The problem begins with shocked material 
filling the input channel and with air at standard atmospheric condi- 
tions in both legs of the tunnel. The input conditions for the mesh do 
not change with time. Pressure data are obtained from the calculations 
at the same two points as in the shock tube experiments. 

The calculation cells are square, 2 mm on a side. The 2-cm channel 
width is therefore divided into ten cells and there are 1270 calculation 
cells in the mesh. 

Figure 8 compares the time history of the calculated and experimental 
over-pressures at point 1 for a case in which the incoming shock had an 
overpressure of 1.29 atmospheres. Figure 9 shows the corresponding 
overpressure at point 2. The calculated overpressures are indicated by 
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TIME (MICROSECONDS) 

I%. 8. Comparison of experimental and calculated tunnel pressure histories at 
point 1. 

heavy dashed lines, and the solid lines represent experimental results. 
(The original experimental data showed only maximum and minimum 
lines in the region of large fluctuation following the shock reflection at I. 
The curves shown, which fit these extremal lines, were substituted for 
the purpose of clarity.) The light, horizontal dashed line indicates the 

TIME hlICROSECONOS) 

FIG. 9. Comparison of experimental and calculated tunnel pressure histories at 
point 2. 
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overpressure which would be observed if the incoming shock reflected 
normally from a semi-infinite wall. It is included here as a reference 
magnitude with which the other curves may be compared. 

The time t = 0 in these figures corresponds to the time at which the 
calculation was initiated. Initial time for the experimental curve was 
chosen in such a way that the time of the first significant overpressure 
measurement at point 1 was in agreement between calculation and 
experiment. No adjustments were made to the timing of any subse- 
quent measurements. 

The agreement between calculated and experimental overpressure 
curves is good in regard to magnitude, timing and curve shape until 
late times. 

At early times one can see that the magnitudes of the calculated pres- 
sure peaks produced by the incoming shock are slightly less than the 
overpressures which would be produced by a one-dimensional reflection. 
Because of two-dimensional effects, this is what one would expect. The 
first peaks on the experimental curves overshoot this maximum value. 
These must be spurious, however, since the initial pressures should not 
exceed the value predicted by the one-dimensional normal shock re- 
flection theory. Subsequent to this overshoot, the calculated and experi- 
mental values decay in amplitude at the same rate. 

After these initial fluctuations, the two curves remain close to the 
same level and are in generally good agreement until the reflected shock 
returns from the end of the channel. Both curves give evidence of the 
arrival of this strong shock, but a comparison shows inconsistencies in 
regard to both curve shape and magnitude at late times. This discre- 
pancy occurs because at late times the simple input conditions used for 
the calculations no longer represent the upstream conditions of the 
shock tube. The initial shock, which was deflected from the tunnel open- 
ing by the deposit plate (see Fig. 7) has reflected from the tunnel model 
and completely encompasses the deposit plate. As a result, a much strong- 
er shock is now present in the input channel of the test model. This 
causes a boost in the overpressure at point 1 and completely alters the 
flow field in the channel. Further comparison of calculation and experi- 
ment is therefore impossible. 

The initial pressure pulse recorded at point 2 (Fig. 9) has two outstand- 
ing characteristics: the initial value of the overpressure is slightly higher 
than the first pulse at point 1, and the duration of the high-pressure 
phase is much longer than it is at point 1. Since the tunnel terminates 
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at point 2, the long duration of the pulse is to be expected, but the 
fact that the shock strength does not decay as a result of the bends in 
the channel is at first glance rather surprising, since it indicates that 
the use of a z-shaped tunnel is a hinderance rather than a help in reducing 
the reflected shock pressure. The reason for this can be seen by looking 
at the various shocks which travel down the tunnel. 

Figure 10 shows a series of six computer-produced isopycnic contour 
plots. The times in these plots correspond to the times of Figs. 8 and 9. 
The closeness of the contours gives a measure of the density gradient 
and thereby enables us to locate shock fronts. 

The calculation begins with a plane shock at the end of the input chan- 
nel. In the second plot this shock expands into the first leg of the tunnel. 
A part of it reflects at point 1 while the remainder proceeds downstream. 
(The initial shock and the reflected shock are labeled Sr and S,, re- 
spectively, in the diagrams.) At t = 100, this weakened initial shock is 
near the second corner and the downstream part of the reflected shock 
is overtaking it. The part of the reflected shock which is moving up- 
stream proceeds more slowly since it moves against the flow. 

In the fourth plot the combined initial and reflected shocks have ex- 
panded about the second corner and repeat the phenomenon which was 
observed at the first corner. The vortices which develop in the expanding 
flow at the corners are evident in this and the next two plots. Also evi- 
dent in the final two plots is the reflected shock which is moving away 
from the second tunnel corner. This reflected shock overtakes and streng- 
thens the leading shock. The resulting shock reaches the end of the tun- 
nel before it can be weakened by a reflected rarefaction. As a result we 
observe a higher initial overpressure at point 2 than we do at point 1. 

The Shock-on-Shock Problem. When a blunt body in steady super- 
sonic motion meets a plane shock wave, the interaction of the detached 
bow shock with the plane shock causes the formation of two shocks 
which move toward the body. When the faster moving shock reaches 
the body, high surface pressures are produced. Eventually these high 
surface pressures are relieved as rarefactions move across the body 
surface, permitting the establishment of a new steady flow regime. 
Recently the FLIC method was used to calculate the flow which occurs 
in the region surrounding the nose of a supersonic blunt body during 
shock immersion in order to determine the amplitude and duration of 
the transient pressure field which occurs at early times. A typical solu- 
tion is described below. 
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FIG. 10. Isopycnic contours depicting the motion of a weak shock as it travels 
through the shelter access tunnel. 
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Consider the immersion of a supersonic flat faced cylinder in a plane 
shock as shown in Fig. 11. The initial steady supersonic motion at a 
Mach number MI has caused the formation of a detached shock as shown 
in the left-hand picture. When the detached bow shock meets the plane 
shock, two shocks and a contact surface are formed as shown in the 

FIG. 11. Description of the shocks and contact surface which form around the 
nose region of a blunt supersonic body during the early stages of shock immersion. 

center picture. They then move toward the flat surface of the body. 
Eventually the faster moving shock reaches the body surface and is 
reflected, as in shown in the right-hand picture. At this time there is 
a sharp rise in the surface pressure. The high surface pressure will last 
until rarefactions relieve them. 

As soon as the first shock reflection occurs, a rarefaction will begin 
to move inward radially toward the stagnation point, located at the 
intersection of the symmetry axis with the body surface. The reflected 
shock soon interacts with the contact surface, sending either a shock or 
a rarefaction back to the body surface, as well as a transmitted shock 
which moves away from the body toward the bow shock. Eventually 
this transmitted shock reaches the bow shock and sends another rare- 
faction back that further relieves the surface pressure. After the arrival 
of the last rarefaction, a steady flow region gradually forms. 

For this calculation two separate solutions must be obtained. The 
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steady flow solution at a Mach number of M, is first computed. This is 
accomplished by beginning with an arbitrary mesh configuration and 
by specifying a steady flow at Mach number M, as the input boundary 
condition at the upstream side of the mesh. The flow field then passes 
through a transient phase, eventually reaching the desired steady so- 
lution. In certain cases the calculation is begun using identical values 
for the fluid field variables in each mesh cell. Although this type of ini- 
tial condition has the virtue of simplicity, it probably adds somewhat 
to the computer time that is necessary to obtain the steady flow solution. 
In some cases it is possible to use a previous solution as a starting con- 
dition by suitably changing the upstream boundary conditions, and then 
letting the flow field relax to the new solution. After the detached shock 
has formed and the field variables no longer change with time, the bound- 
ary conditions in the upstream input cells are changed discontinuously 
to the desired solution of the Rankine-Hugoniot equations describing 
the new plane shock wave, characterized by the shock Mach number, 
M,. A plane shock then forms naturally at the upstream edge of the 
mesh and moves across the mesh towards the detached bow shock. 
The transient phase of the so-called “shock-on-shock” process begins 
when the two shocks meet. 

Figure 12 shows the isobar contour plots for a solution in which 
M, = M, = 3.15. Here 6r and 6z are equal to 0.05R and O.O25R, 
respectively, where R is the body radius. The upstream flow conditions 
are chosen such that the input density and sound speed are unity. We 
use a polytropic equation of state for air with y equal to 1.4. This is 
a good approximation for relatively weak shocks, as will be shown below. 
The first picture in the upper left-hand corner of Fig. 12 shows the un- 
disturbed bow shock. The second picture depicts the flow field shortly 
after shock intersection. The two shocks which form when the bow 
shock and the plane shock interact can be seen here, as can the un- 
disturbed plane shock at the upper and lower portions of the mesh. 
In the third picture the faster moving shock has reflected at the body 
surface and is moving away from the body toward the bow shock. In 
the fourth and fifth pictures, a rarefaction is visible that is moving in- 
ward radially toward the stagnation point. The sixth picture depicts 
the flow field at late times when a new steady flow solution has formed. 
Note that the shape of the bow shock is different at late times than it 
was before the passage of the plane shock. This is because the upstream 
Mach number has increased from a value of 3.15 to a 
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FIG. 12. Isobar plots depicting a numerical solution for the blunt body immer- 
sion problem MI = M, = 3.15. 
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The results of this calculation compare favorably with some previously 
unpublished experimental data obtained recently by Merritt and Aron- 
son [l 11, who have obtained shock-on-shock data for various body 
shapes by mounting a shock tube in a wind tunnel settling chamber 
upstream from the model [12]. Figure 13 shows the stagnation pressure 
ratio plotted as a function of time. The time unit has been chosen so 
that the plane shock, moving at a velocity US relative to the body, moves 

_ ---IT _-._ T... , i 

- MERRITT 8 ARONSON EXP. 

------ NUMERICAL SOLUTION 

STEADY FLOW VALUE 

FIG. 13. Experimental and computed stagnation pressure history. M, = M, = 3.15. 

1 body radius per time unit. The dashed line represents the computed 
results and the solid line represents the scaled experimental pressure 
record obtained by Merritt and Aronson. They agree very well for 
times less than 3.0. The experimental pressure drops at late time because 
of the finite duration of the shock tube experiment. 

The first drop in the stagnation pressure at a time of 1.0 is caused by 
the arrival of the axially moving rarefaction which was transmitted back 
to the body when the reflected shock reached the bow shock. The sec- 
ond pressure drop at a time of 2.4 is caused by the arrival of the radially 
moving rarefaction that formed at the outer edge of the body at the 
time of the first shock reflection. Note that the reflection of this rare- 
faction at the symmetry axis causes a pressure undershoot. After the 
arrival of the second rarefaction, the stagnation pressure gradually 
rises to its final steady flow value. The late time stagnation pressure, 
calculated from Bernouli’s law and the Rankine-Hugoniot equations 
for the bow shock, is shown on the plot. The calculated value of the 
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stagnation pressure has not quite reached this value at the time the 
calculation is stopped. 

Figure 14 shows the positions of the various shocks at the time of the 
first shock reflection. The dark lines are taken from photographic data 

FIG. 14. Measured and calculated shock positions at the time of first shock re- 
flection. MI = M, = 3.15. 
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obtained by Merritt and Aronson, and the light grey lines are isopycnic 
lines plotted from the corresponding numerical solution. 

The computed pressure ratios for the flat body surface are plotted as 
a function of the scaled radius for several times in Fig. 15. Note that 
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FIG. 15. Computed surface pressure ratio vs. scaled radius for several times after 

shock immersion. MI = M, = 3.15. 

the shock first arrives at the outer radius of the body, as shown by the 
high pressures at large radii in the zero time plot. The plots at times 
of 0.554 and 1.11 show the rapid relief of the pressure at the outer body 
radii, and the motion of the rarefaction as it travels inward toward 
the stagnation point. The pressure plot at a time of 2.49 shows the fur- 
ther decrease in the surface pressure in the neighborhood of the stag- 
nation point caused by reflection of the rarefaction at the symmetry 
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axis. The late time plot depicts the surface pressure distribution for steady 
flow at the new value of the upstream Mach number, which is 3.26 
after the passage of the plane shock. 

Diffraction of a Plane Shock by a Cone. In certain cases, partial cells 
can be used in obtaining satisfactory solutions. This is illustrated in the 
final example, which simulates the passage of an infinite strength plane 
shock over a 300 half angle cone. Here the fluid ahead of the shock is 
cold and at rest. As in the earlier problems, y is equal to 1.4. In order 
to eliminate partial cells with small fractional volumes, the mesh has been 
chosen such that the conical surface coincides with diagonals drawn 
through the corners of the mesh cells. This means that each of the par- 
tial cells adjacent to the conical surface has a fractional volume of ap- 
proximately one-half. To accomplish the desired cone shape, the aspect 
ratio of the mesh cells, 8r/6z, was set equal to the tangent of the cone 
half angle. For the example shown below Br = R/16, where R is the 
cone base radius. 

Figure 16 shows a series of nine computer-drawn isobar plots, illus- 
trating the development in time of the numerical solution. The time in- 
terval between plots is LIVv, where L is the body length and US is the 
velocity of the plane shock relative to the body. (The plane shock moves 
one body length during the time interval between each consecutive plot.) 
The plane shock has nearly reached the cone base in the first plot in the 
upper left-hand corner. Also evident is the shock caused by reflection 
at the cone surface. As the plane shock moves aft past the cone base, 
the reflected shock moves outward radially to form a standing bow shock 
which is attached at the apex of the cone. This radial motion is evident 
in the second plot. By this time the shock has also diffracted around 
the base of the cone and is converging on the symmetry axis, as can be 
seen in the second plot. When the diffracted shock converges on the 
symmetry axis, a high pressure region forms near the cone base, causing 
another shock to move outward from the symmetry axis. This can be 
seen in the third plot. The bow shock shown in the fourth plot remains 
essentially unchanged at later times, as do the flow variables in the 
neighborhood of the conical surface. The flow field in the base region 
of the cone continues to change slowly for a much longer time, as can 
be seen in the following five plots. Figure 17 depicts contour plots at 
a very late time when steady flow has been established. 

It can be seen that the conical bow shock is poorly defined in the 
region near the apex of the cone. This is to be expected, since here the 
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region between the cone surface and the bow shock is smaller than the 
dimensions of a mesh cell. However, experience with several conical 
flow problems has shown that the solutions obtained for the regions 
aft of the apex, where good resolution is possible, are accurate. The 
late time surface pressures on the conical surface in the region approxi- 
mately one-half body length aft of the apex are within 2% of the value 
obtained by Kopal for steady flow past an infinite cone [13]. 

VI. CONCLUDING REMARKS 

The outstanding characteristic of the FLIC method is that it can 
provide accurate solutions for complicated fluid flow problems with a 
relatively modest investment in computer time. It is most suitable for 
one material problems involving large fluid distortions. Surprisingly 
good results have been obtained in some applications using a relatively 
coarse mesh. This was demonstrated by the shelter tunnel problem 
described above. 
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